Physical and Chemical Relationships in Accelerated Carbonation Conditions of Alkali-Activated Cement Based on Type of Binder and Alkali Activator

Author:

Yamazaki Yuto,Kim JihoonORCID,Kadoya Keisuke,Hama YukioORCID

Abstract

Alkali-activated cements prepared from aluminosilicate powders, such as blast furnace slag and fly ash, are rapidly attracting attention as alternatives to cement because they can significantly reduce CO2 emissions compared to conventional cement concrete. In this study, we investigated the relationship between the physical and chemical changes by accelerated carbonation conditions of alkali-activated cements. Alkali-activated cements were prepared from binders composed of blast furnace slag and fly ash as well as alkali activators sodium silicate and sodium hydroxide. Physical changes were analyzed from compressive strength, pH, and neutralization depth, and chemical changes were analyzed from XRD, TG-DTG, and 29Si MAS NMR. The C–(N)–A–S–H structure is noted to change via carbonation, and the compressive strength is observed to decrease. However, in the case of Na-rich specimens, the compressive strength does not decrease by accelerated carbonation. This work is expected to contribute to the field of alkali-activated cements in the future.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3