Performance Analysis of Reinforced Epoxy Functionalized Carbon Nanotubes Composites for Vertical Axis Wind Turbine Blade

Author:

Elhenawy YasserORCID,Fouad YasserORCID,Marouani HaykelORCID,Bassyouni MohamedORCID

Abstract

Synthetic materials using epoxy resin and woven Kevlar fiber nanocomposites were fabricated in the presence of functionalized multiwalled carbon nanotubes (F-MWCNTs). Kevlar-reinforced epoxy nanocomposites were designed to manufacture a small blade of vertical axis wind turbines (VAWT). It is important to estimate the deflection of the versatile composite turbine blades to forestall the blades from breakage. This paper investigates the effect of F-MWCNTs on mechanics and deflection of reinforced epoxy composites. The outcomes show that the mixing of F-MWCNTs with epoxy resin using a sonication process has a significant influence on the mechanical properties. Substantial improvement on the deflections was determined based on finite element analysis (FEA). The vortices from the vertical axis wind turbines (VAWTs) blades have a negative impact on power efficiency, since small blades are shown to be effective in reducing tip vortexes within the aerospace field. To support the theoretical movement of the VAWT blade, modeling calculations and analyzes were performed with the ANSYS code package to achieve insight into the sustainability of epoxy nanocomposites for turbine blade applications below aerodynamic, gravitational, and centrifugal loads. The results showed that the addition of F-MWCNTs to epoxy and Kevlar has a significant effect on the bias estimated by finite element analysis. ANSYS analysis results showed lower deflection on the blade using epoxy with an additional of 0.50 wt.% of MWCNTs-COOH at tip speed ratios of 2.1, 2.6, and 3.1.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3