Influence of Hard Segment Content and Diisocyanate Structure on the Transparency and Mechanical Properties of Poly(dimethylsiloxane)-Based Urea Elastomers for Biomedical Applications

Author:

Riehle Natascha,Athanasopulu Kiriaki,Kutuzova Larysa,Götz Tobias,Kandelbauer AndreasORCID,Tovar Günter E. M.,Lorenz GünterORCID

Abstract

The effect of hard segment content and diisocyanate structure on the transparency and mechanical properties of soft poly(dimethylsiloxane) (PDMS)-based urea elastomers (PSUs) was investigated. A series of PSU elastomers were synthesized from an aminopropyl-terminated PDMS (M¯n: 16,300 g·mol−1), which was prepared by ring chain equilibration of the monomers octamethylcyclotetrasiloxane (D4) and 1,3-bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS). The hard segments (HSs) comprised diisocyanates of different symmetry, i.e., 4,4′-methylenebis(cyclohexyl isocyanate) (H12MDI), 4,4′-methylenebis(phenyl isocyanate) (MDI), isophorone diisocyanate (IPDI), and trans-1,4-cyclohexane diisocyanate (CHDI). The HS contents of the PSU elastomers based on H12MDI and IPDI were systematically varied between 5% and 20% by increasing the ratio of the diisocyanate and the chain extender APTMDS. PSU copolymers of very low urea HS contents (1.0–1.6%) were prepared without the chain extender. All PSU elastomers and copolymers exhibited good elastomeric properties and displayed elongation at break values between 600% and 1100%. The PSUs with HS contents below 10% were transparent and became increasingly translucent at HS contents of 15% and higher. The Young’s modulus (YM) and ultimate tensile strength values of the elastomers increased linearly with increasing HS content. The YM values differed significantly among the PSU copolymers depending on the symmetry of the diisocyanate. The softest elastomer was that based on the asymmetric IPDI. The elastomers synthesized from H12MDI and MDI both exhibited an intermediate YM, while the stiffest elastomer, i.e., that comprising the symmetric CHDI, had a YM three-times higher than that prepared with IPDI. The PSUs were subjected to load–unload cycles at 100% and 300% strain to study the influence of HS morphology on 10-cycle hysteresis behavior. At 100% strain, the first-cycle hysteresis values of the IPDI- and H12MDI-based elastomers first decreased to a minimum of approximately 9–10% at an HS content of 10% and increased again to 22–28% at an HS content of 20%. A similar, though less pronounced, trend was observed at 300% strain. First-cycle hysteresis among the PSU copolymers at 100% strain was lowest in the case of CHDI and highest in the IPDI-based elastomer. However, this effect was reversed at 300% strain, with CHDI displaying the highest hysteresis in the first cycle. In vitro cytotoxicity tests performed using HaCaT cells did not show any adverse effects, revealing their potential suitability for biomedical applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3