Synthesis of Poly(l-lactide-co-ε-caprolactone) Copolymer: Structure, Toughness, and Elasticity

Author:

Zhang Mengyuan,Chang Zhonghua,Wang Xiaofeng,Li Qian

Abstract

Biodegradable and bioabsorbable polymers have drawn considerable attention because of their mechanical properties that mimic human soft tissue. Poly(l-lactide-co-ε-caprolactone) (PLCL), the copolymer of L-lactic (LA) and ε-caprolactone (CL), has been applied in many tissue engineering and regenerative medicine fields. However, both the synthesis of PLCL and the structure-activity relationship of the copolymer need to be further investigated to allow tuning of different mechanical properties. The synthesis conditions of PLCL were optimized to increase the yield and improve the copolymer properties. The synthetic process was evaluated by while varying the molar ratio of the monomers and polymerization time. The mechanical properties of the copolymer were investigated from the macroscopic and microscopic perspectives. Changes in the polymerization time and feed ratio resulted in the difference in the LA and CL content, which, in turn, caused the PLCL to exhibit different properties. The PLCL obtained with a feed ratio of 1:1 (LA:CL) and a polymerization time of 30 h has the best toughness and elasticity. The developed PLCL may have applications in dynamic mechanical environment, such as vascular tissue engineering.

Funder

the International Science & Technology Cooperation Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3