Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11

Author:

Lee NahyeonORCID,Joo JungheeORCID,Lin Kun-Yi Andrew,Lee JechanORCID

Abstract

Herein, the pyrolysis of low-density polyethylene (LDPE) scrap in the presence of a H-ZSM-11 zeolite was conducted as an effort to valorize plastic waste to fuel-range chemicals. The LDPE-derived pyrolytic gas was composed of low-molecular-weight aliphatic hydrocarbons (e.g., methane, ethane, propane, ethylene, and propylene) and hydrogen. An increase in pyrolysis temperature led to increasing the gaseous hydrocarbon yields for the pyrolysis of LDPE. Using the H-ZSM-11 catalyst in the pyrolysis of LDPE greatly enhanced the content of propylene in the pyrolytic gas because of promoted dehydrogenation of propane formed during the pyrolysis. Apart from the light aliphatic hydrocarbons, jet fuel-, diesel-, and motor oil-range hydrocarbons were found in the pyrolytic liquid for the non-catalytic and catalytic pyrolysis. The change in pyrolysis temperature for the catalytic pyrolysis affected the hydrocarbon compositions of the pyrolytic liquid more materially than for the non-catalytic pyrolysis. This study experimentally showed that H-ZSM-11 can be effective at producing fuel-range hydrocarbons from LDPE waste through pyrolysis. The results would contribute to the development of waste valorization process via plastic upcycling.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3