Abstract
Rubber waste remains a challenge for material science because its covalently cross-linked structure hinders the establishment of the circular economy of rubber. Devulcanisation may provide a solution, as it converts rubber vulcanisates back into their original, uncured state. Devulcanised rubber may be revulcanised or incorporated into virgin rubber, thus waste is utilized and the use of primary resources is reduced at the same time. In this paper, we treated sulphur-cured EPDM (ethylene propylene diene monomer) rubber on a two-roll mill at various temperatures and frictions. We determined the effectiveness of devulcanisation via Horikx’s analysis, which suggested that low devulcanisation temperatures would result in a 50% decrease in cross-link density with minimal polymer degradation. The devulcanisate was recycled via two methods: (a) revulcanisation with extra curing agents, and (b) mixing it with various amounts of the original rubber mixture, preparing rubber samples with 25, 50, 75, and 100 wt% recycled content. Tensile tests revealed that the samples’ elastic properties were severely compromised at 75 and 100 wt% devulcanisate contents. However, tensile strength decreased only by 15% and 20% for revulcanisates containing 25% and 50% recycled rubber, respectively.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Subject
Polymers and Plastics,General Chemistry
Reference39 articles.
1. Styrene Butadiene Rubber (SBR) Commodity Report,2019
2. Plastics—The Facts 2017; An Analysis of European Plastics Production, Demand and Waste Data,2018
3. Statistical Bulletin,2019
4. Microwave devulcanization of ground tire rubber and applicability in SBR compounds
5. Overview of the world rubber recycling market;Forrest,2014
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献