Equilibrium, Thermodynamic, Reuse, and Selectivity Studies for the Bioadsorption of Lanthanum onto Sericin/Alginate/Poly(vinyl alcohol) Particles

Author:

da Costa Talles BarcelosORCID,da Silva Meuris Gurgel Carlos,Vieira Melissa Gurgel Adeodato

Abstract

In a scenario of high demand, low availability, and high economic value, the recovery of rare-earth metals from wastewater is economically and environmentally attractive. Bioadsorption is a promising method as it offers simple design and operation. The aim of this study was to investigate lanthanum bioadsorption using a polymeric bioadsorbent of sericin/alginate/poly(vinyl alcohol)-based biocomposite. Batch system assays were performed to evaluate the equilibrium, thermodynamics, regeneration, and selectivity of bioadsorption. The maximum capture amount of lanthanum at equilibrium was 0.644 mmol/g at 328 K. The experimental equilibrium data were better fitted by Langmuir and Dubinin–Radushkevich isotherms. Ion exchange mechanism between calcium and lanthanum (2:3 ratio) was confirmed by bioadsorption isotherms. Thermodynamic quantities showed that the process of lanthanum bioadsorption was spontaneous (−17.586, −19.244, and −20.902 kJ/mol), endothermic (+15.372 kJ/mol), and governed by entropic changes (+110.543 J/mol·K). The reusability of particles was achieved using 0.1 mol/L HNO3/Ca(NO3)2 solution for up to five regeneration cycles. The bioadsorbent selectivity followed the order of lanthanum > cadmium > zinc > nickel. Additionally, characterization of the biocomposite prior to and post lanthanum bioadsorption showed low porosity (9.95 and 12.35%), low specific surface area (0.054 and 0.019 m2/g), amorphous character, and thermal stability at temperatures up to 473 K. This study shows that sericin/ alginate/poly(vinyl alcohol)-based biocomposites are effective in the removal and recovery of lanthanum from water.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3