Use of Solid-State NMR Spectroscopy for the Characterization of Molecular Structure and Dynamics in Solid Polymer and Hybrid Electrolytes

Author:

Foran GabrielleORCID,Verdier Nina,Lepage David,Malveau Cédric,Dupré Nicolas,Dollé MickaëlORCID

Abstract

Solid-state NMR spectroscopy is an established experimental technique which is used for the characterization of structural and dynamic properties of materials in their native state. Many types of solid-state NMR experiments have been used to characterize both lithium-based and sodium-based solid polymer and polymer–ceramic hybrid electrolyte materials. This review describes several solid-state NMR experiments that are commonly employed in the analysis of these systems: pulse field gradient NMR, electrophoretic NMR, variable temperature T1 relaxation, T2 relaxation and linewidth analysis, exchange spectroscopy, cross polarization, Rotational Echo Double Resonance, and isotope enrichment. In this review, each technique is introduced with a short description of the pulse sequence, and examples of experiments that have been performed in real solid-state polymer and/or hybrid electrolyte systems are provided. The results and conclusions of these experiments are discussed to inform readers of the strengths and weaknesses of each technique when applied to polymer and hybrid electrolyte systems. It is anticipated that this review may be used to aid in the selection of solid-state NMR experiments for the analysis of these systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Total Canada Inc

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of functional groups on lithium salt dispersion and mobility in polymer electrolytes;Journal of Applied Polymer Science;2024-08-30

2. Nuclear Magnetic Resonance Spectroscopy;Advances in Analytical Techniques for Forensic Investigation;2024-08-05

3. NMR studies of lithium and sodium battery electrolytes;Progress in Nuclear Magnetic Resonance Spectroscopy;2024-08

4. Unveiling the Reactivity and the Li‐Ion Exchange at the PEO‐Li6PS5Cl Interphase: Insights from Solid‐State NMR;Small Structures;2024-07-28

5. Evidence of Superionic Na+ Conductivity in Partially Hydrolyzed NaBH4;The Journal of Physical Chemistry C;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3