On the Feasibility of a pMDI-Reduced Production of Wood Fiber Insulation Boards by Means of Kraft Lignin and Ligneous Canola Hulls

Author:

Ostendorf Kolja,Ahrens Christian,Beulshausen Arne,Tene Tayo Jean Lawrence,Euring Markus

Abstract

The thermal insulation of buildings using wood fiber insulation boards (WFIBs) constitutes a positive contribution towards climate change. Thereby, the bonding of wood fibers using mainly petrochemical-based resins such as polymeric diphenylmethane diisocyanate (pMDI) is an important measure to meet required board properties. Still there is a need to reduce or partial substitute the amount of these kinds of resins in favor of a greener product. This study therefore focusses on the feasibility of reducing the amount of pMDI by 50% through the addition of 1% BioPiva 395 or Indulin as two types of softwood Kraft-Lignin and lignin rich canola hulls together with propylene carbonate as a diluent. A panel density of 160 kg/m3 and a thickness of 40 mm was aimed. The curing of these modified pMDI was investigated by using two types of techniques: hot-steam (HS) and innovative hot-air/hot-steam-process (HA/HS). The WFIBs were then tested on their physical-mechanical properties. The equilibrium moisture content (EMC) was determined at two different climates. An exemplary investigation of thermal conductivity was conducted as well. The WFIBs did undergo a further chemically based analysis towards extractives content and elemental (C, N) composition. The results show that it is feasible to produce WFIBs with lower quantities of pMDI resin and added lignin with enhanced physical-mechanical board properties, which were lacking no disadvantages towards thermal conductivity or behavior towards moisture, especially when cured via HA/HS-process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3