Depressurization-Induced Nucleation in the “Polylactide-Carbon Dioxide” System: Self-Similarity of the Bubble Embryos Expansion

Author:

Zimnyakov DmitryORCID,Alonova Marina,Ushakova EkaterinaORCID

Abstract

Self-similar expansion of bubble embryos in a plasticized polymer under quasi-isothermal depressurization is examined using the experimental data on expansion rates of embryos in the CO2-plasticized d,l-polylactide and modeling the results. The CO2 initial pressure varied from 5 to 14 MPa, and the depressurization rate was 5 × 10−3 MPa/s. The constant temperature in experiments was in a range from 310 to 338 K. The initial rate of embryos expansion varied from ≈0.1 to ≈10 µm/s, with a decrease in the current external pressure. While modeling, a non-linear behavior of CO2 isotherms near the critical point was taken into account. The modeled data agree satisfactorily with the experimental results. The effect of a remarkable increase in the expansion rate at a decreasing external pressure is interpreted in terms of competing effects, including a decrease in the internal pressure, an increase in the polymer viscosity, and an increase in the embryo radius at the time of embryo formation. The vanishing probability of finding the steadily expanding embryos for external pressures around the CO2 critical pressure is interpreted in terms of a joint influence of the quasi-adiabatic cooling and high compressibility of CO2 in the embryos.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference44 articles.

1. Principles of Tissue Engineering;Lanza,2013

2. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Materials and properties;Zhang,2017

3. Biomedical Foams for Tissue Engineering Applications,2014

4. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends

5. Porous Materials and Supercritical Fluids

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3