Study on Improving the Processability and Properties of Mixed Polyolefin Post-Consumer Plastics for Piping Applications

Author:

Garofalo Emilia,Di Maio LucianoORCID,Scarfato PaolaORCID,Pietrosanto AriannaORCID,Protopapa Antonio,Incarnato Loredana

Abstract

This study focuses on the upgrading strategies to make Fil-s (acronym for film-small), a polyolefin-based material coming from the mechanical recycling of post-consumer flexible packaging, fit for re-use in the piping sector. The effects of washing treatments (at cold and hot conditions) and the addition of an experimental compatibilizer on the chemical-physical properties of Fil-s were first assessed. The measurements of some key properties (density, melt flow index, flexural modulus, yield strength), for both Fil-s as such and the different developed Fil-s based systems, was also conducted in order to evaluate the suitability of this complex and challenging waste stream to replace virgin PE-based pipe and fitting products, in compliance to ASTM D3350 standard. The outcomes of the present work contributed to define a code, for each Fil-s system investigated, useful for identifying the level of their performance in piping applications. All the recyclates were extruded as pipes by using a pilot scale plant, but the process resulted more stable and continuous with the compatibilized Fil-s, as it was deducible from its flow properties. Moreover, the best mechanical performances were exhibited by the hot-washed Fil-s pipes, with an increase in pipe stiffness equal to 65% respect to the unwashed sample.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference38 articles.

1. The Circular Economy for Plastics—A European Overview,2019

2. Summary for Policymakers

3. Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 Amending Directive 94/62/EC on Packaging and Packaging Waste,2018

4. Plastic flexible films waste management – A state of art review

5. Recycling of Polymer-Based Multilayer Packaging: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3