Establishment of a CoMFA Model Based on the Combined Activity of Bioconcentration, Long-Range Transport, and Highest Infrared Signal Intensity and Molecular Design of Environmentally Friendly PBB Derivatives

Author:

Yang Luze,Li Minghao,Liu Miao

Abstract

In the current study, a comparative molecular field analysis (CoMFA) model with the combined activity of polybrominated biphenyls (PBBs) bioconcentration, long-range transport, and the highest infrared signal intensity (weight ratio of 5:4:1) was constructed based on the threshold method and was further evaluated and analyzed. PBB-153 derivatives with improved combined activity values of bioconcentration, long-range transport, and the highest infrared signals intensity were designed based on contour maps of the CoMFA model. The environmental stability and functionality of the derivatives were also evaluated. The constructed model showed good prediction ability, fitting ability, stability, and external prediction ability. The contribution rates of electrostatic and steric fields to the combined activity of PBBs were 53.4% and 46.6%, respectively. Four PBB-153 derivatives with significantly improved bioconcentration, long-range transport and the highest infrared signal intensity (the combined activity value of these three parameters decreased) were screened with good environmental stability and functionality. Results validated the accuracy and reliability, and ability of the generated model to realize the simultaneous modification of the three activities of the target molecule. The binding ability of the designed derivatives to food chain biodegradation enzymes increased, thereby verifying the improvement in the bioconcentration. The half-lives of the derivatives in air and their ability to be absorbed by the plants significantly improved compared to the target molecule, further showing that the long-range transport of derivatives was reduced. In addition, the introduction of the –NO group caused the N =O stretching vibration of the derivatives to increase the infrared signal intensity. The present model provides a theoretical design method for the molecular modification of environmentally friendly PBBs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3