Green Natural Rubber Composites Reinforced with Black/White Rice Husk Ashes: Effects of Reinforcing Agent on Film’s Mechanical and Dielectric Properties

Author:

Sintharm PraewpakunORCID,Phisalaphong MuenduenORCID

Abstract

Green natural rubber (NR) composites reinforced with black rice husk ash (BRHA)/white rice husk ash (WRHA), using alginate as a thickening and dispersing agent and crosslinking by CaCl2, was developed to improve mechanical, chemical and dielectric properties of NR-based films by using a latex aqueous microdispersion process. A maximum of 100 per hundred rubbers (phr) of rice husk ashes (RHAs) could be integrated in NR matrix without phase separation. Mechanical properties of the composite films were considerably enhanced, compared to the neat NR film. The composite films reinforced with WRHA demonstrated relatively better mechanical properties than those reinforced with BRHA, whereas the composites filled with BRHA demonstrated higher elongation at break. The crosslinking by CaCl2 improved the film tensile strength but lowered the film elasticity. The reinforcement strongly improved chemical resistance of the composite films in toluene. The films are biodegradable in soil, with weight loss of 7.6–18.3% of the initial dry weight after 3 months. Dielectric constant and dielectric loss factors of the composite films were enhanced with RHAs loading. According to the obtained properties, the composites offer potential for further development as stretchable conductive substrate or semiconducting polymer films for electronic applications.

Funder

Chulalongkorn University

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference59 articles.

1. Polymer Biodegradation and Biodegradable Polymers—A Review;Katarzyna;Pol. J. Environ. Stud.,2010

2. Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions

3. Natural Rubber Processinghttps://www.krungsri.com/bank/getmedia/5fc8fc4b-5f60-48ad-a306-5533ed9df767/IO_Rubber_2018_EN.aspx

4. Nanostructures and adhesion in natural rubber: new era for a classic

5. Micro and Nano Calcium Carbonate Filled Natural Rubber Composites and Nanocomposites;Imran,2013

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3