The Influence of Monomer Composition and Surface-CrossLinking Condition on Biodegradation and Gel Strength of Super Absorbent Polymer

Author:

Kim Jung Soo,Kim Dong HyunORCID,Lee Youn SukORCID

Abstract

In this study, a superabsorbent polymer (SAP) comprising poly (IA-co-cellulose-co-VSA-co-AA; ICVA) core-SAP (CSAP) was synthesized through radical polymerization using itaconic acid (IA), acrylic acid (AA), cellulose, and vinyl sulfonic acid (VSA) as monomers. The absorption performances and relative biodegradability of various compositions prepared by adjusting the amounts of cellulose and VSA with constant IA and AA content were compared. Increasing the cellulose content in CSAP contributed to improved biodegradation of the surface-crosslinked SAP (SSAP) and gel strength, although the free absorbency (FA) and centrifuge retention capacity (CRC) decreased. Increasing the VSA content resulted in strong anionicity, which enables the absorption of large amounts of water. Surface-crosslinking technology was applied to the CSAP synthesized with the optimal composition ratio to increase its absorption performance and gel strength. Improved performance of the synthesized SSAP (a CRC of 30.4 g/g, absorbency under load (AUL) of 23.3 g/g, and permeability of 55 s) was achieved by selecting the optimal surface-crosslinking treatment time and the amount of distilled water in the surface-crosslinking solution: as the latter was increased in the surface-crosslinking solution, the AUL and permeability of the SSAP were improved, and its biodegradability was found to be 54% compared to the 100% biodegradable cellulose hydrogel in the control group.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3