The Effect of Microcellular Structure on the Dynamic Mechanical Thermal Properties of High-Performance Nanocomposite Foams Made of Graphene Nanoplatelets-Filled Polysulfone

Author:

Antunes MarceloORCID,Abbasi HoomanORCID,Velasco José IgnacioORCID

Abstract

Polysulfone nanocomposite foams containing variable amounts of graphene nanoplatelets (0–10 wt%) were prepared by water vapor-induced phase separation (WVIPS) and supercritical CO2 (scCO2) dissolution. WVIPS foams with two ranges of relative densities were considered, namely, between 0.23 and 0.41 and between 0.34 and 0.46. Foams prepared by scCO2 dissolution (0.0–2.0 wt% GnP) were obtained with a relative density range between 0.35 and 0.45. Although the addition of GnP affected the cellular structure of all foams, they had a bigger influence in WVIPS foams. The storage modulus increased for all foams with increasing relative density and GnP’s concentration, except for WVIPS PSU-GnP foams, as they developed open/interconnected cellular structures during foaming. Comparatively, foams prepared by scCO2 dissolution showed higher specific storage moduli than similar WVIPS foams (same relative density and GnP content), explained by the microcellular structure of scCO2 foams. As a result of the plasticizing effect of CO2, PSU foams prepared by scCO2 showed lower glass transition temperatures than WVIPS foams, with the two series of these foams displaying decreasing values with incrementing the amount of GnP.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference46 articles.

1. 12-High Temperature/High Performance Polymers;McKeen,2012

2. Polymers and composites for orthopedic applications;Gohil,2017

3. High-Temperature Engineering Thermoplastics;Kyriacos,2017

4. Polyarylethersulfones;El-Hibri,2006

5. Open Nanoporous Morphologies from Polymeric Blends by Carbon Dioxide Foaming

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3