Water Tree Propagation in a Wide Temperature Range: Insight into the Role of Mechanical Behaviors of Crosslinked Polyethylene (XLPE) Material

Author:

Lin SiyanORCID,Zhou Kai,Li Yuan,Meng Pengfei

Abstract

To understand the propagation characteristics of water trees at a wide temperature range, this paper presents the effect of mechanical behaviors on the sizes of water trees. An accelerated water tree aging experiment was performed at −15 °C, 0 °C, 20 °C, 40 °C, 60 °C, and 80 °C for crosslinked polyethylene (XLPE) specimens, respectively. Depending on the micro observations of water tree slices, water tree length is not always increasing with the increase in temperature. From 0 °C to 60 °C, water tree length shows a trend from decline to rise. Above 60 °C, water tree length continues to reduce. Dynamic mechanical analysis (DMA) shows that the glass transition temperature of the new XLPE specimen is about −5 °C, and the α-relaxation is significant at about 60 °C. With the increase in temperature, the XLPE material presents different deformation. Meanwhile, according to the result of the yield strength of XLPE at different temperatures, with the increase in temperature, the yield strength decreases from 120 MPa to 75 MPa, which can promote the water tree propagation. According to the early stage in the water tree propagation, a water tree model was constructed with water tree branches like a string of pearls to calculate electric field force. According to the results of electric field force at different expansion conditions, with the increase in temperature, due to expansion of the water tree branches, the electric field force at water tree tips drops, which can suppress the water tree propagation. Regardless of high temperature or low temperature, the water tree propagation is closely related to the mechanical behaviors of the material. With the increase in temperature, the increased deformation will suppress the water tree propagation, whereas the decreased yield strength will promote water tree propagation. For this reason, at different temperatures, the promotion or suppression in water tree propagation is determined by who plays a dominant role.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3