Author:
Yang Shuaishuai,An Xianhui,Qian Xueren
Abstract
Due to excellent flexibility and hydrophilicity, cellulose fibers (CFs) have become one of the most potential substrate materials in flexible and wearable electronics. In previous work, we prepared cobalt oxyhydroxide with crystal defects modified polypyrrole (PPy)@CFs composites with good electrochemical performance. In this work, we redesigned the crystalline and nanoscale cobalt oxyhydroxide with zeolitic imidazolate frameworks-67 (ZIF-67) as precursor. The results showed that the PPy@ZIF-67 derived cobalt oxyhydroxide@CFs (PZCC) hybrid electrode materials possess far better capacitance of 696.65 F·g−1 than those of PPy@CFs (308.75 F·g−1) and previous PPy@cobalt oxyhydroxide@CFs (571.3 F·g−1) at a current density of 0.2 A·g−1. The PZCC delivers an excellent cyclic stability (capacitance retention of 92.56%). Moreover, the PZCC-supercapacitors (SCs) can provide an energy density of 45.51 mWh cm−3 at a power density of 174.67 mWh·cm−3, suggesting the potential application in energy storage area.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Polymers and Plastics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献