Enhancing the Antifungal Activity of Griseofulvin by Incorporation a Green Biopolymer-Based Nanocomposite

Author:

Shehabeldine AmrORCID,El-Hamshary HanyORCID,Hasanin MohamedORCID,El-Faham AymanORCID,Al-Sahly Mosaed

Abstract

Fungal biofilms have caused several medical problems, resulting in significant morbidity and mortality as well as poor response to antifungal drugs. The current study was designed to evaluate the enhancement of antifungal and anti-biofilm activity of Griseofulvin-loaded green nanocomposite-based biopolymers (Ge-Nco) of glycogen and gelatin against different strains of pathogenic Candida species. The prepared Ge-Nco was characterized using Fourier-transform infrared (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and transmission electron microscope (TEM). In addition, the morphology of the mature biofilm and the inhibition of biofilm was monitored and visualized using confocal laser scanning microscopy (CLSM). The minimal inhibitory concentrations (MIC) and (IC50) of Griseofulvin alone and the prepared Ge-Nco against three different strains of Candida sp. were determined according to Clinical and Laboratory Standards Institute (CLSI) method. The effects of Griseofulvin alone and Ge-Nco on the tested Candida sp. biofilm formation were determined by the crystal-violet staining protocol. The biofilm inhibition potential of Ge-Nco against the tested Candida sp. was detected and depicted under CLSM (2.5 D view). The findings depicted that Ge-Nco was prepared in nanometer size (10–23 nm). The observed minimum inhibitory concentration (MIC) of Griseofulvin alone and Ge-Nco against three different Candida sp. were found to be in range 49.9–99.8 μg/mL and 6.24–12.48 μg/mL, respectively. These results provide evidence for implementing efficient antivirulence approaches against three different Candida sp. that would be less likely to foster the emergence of resistance.

Funder

Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3