Strontium Aluminate-Based Long Afterglow PP Composites: Phosphorescence, Thermal, and Mechanical Characteristics

Author:

Poulose Anesh ManjalyORCID,Anis ArfatORCID,Shaikh HamidORCID,Alhamidi Abdullah,Siva Kumar NadavalaORCID,Elnour Ahmed YagoubORCID,Al-Zahrani Saeed M.

Abstract

A tremendous potential has been observed in the designing of long afterglow materials for sensing, bioimaging, and encryption applications. In this study, two different strontium aluminate-based luminescent materials; SrAl2O4: Eu, Dy (S1), and Sr4Al14O25: Eu, Dy (S2) were melt-mixed with polypropylene (PP) matrix, and the phosphorescence properties were evaluated. After excitation at 320 nm, the PP/S1 composite exhibited a green emission and the PP/S2 generated a blue emission at 520 nm and 495 nm, respectively. The emission spectra intensity increased by increasing the content of these luminescent fillers. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) experiments show that no chemical reaction occurred during the melt-mixing process. The differential scanning calorimetry (DSC) results revealed that the total crystallinity of the composites reduced by increasing the amount of the fillers; however, no changes in the temperature of melting (Tm) and crystallization (Tc) of PP were observed. Both fillers improved the impact strength of the composites, but the tensile strength (TS) and modulus (TM) decreased. Poly (ethylene glycol) dimethyl ether (P) plasticizer was used to improve the filler-matrix interaction and its dispersion; nevertheless, it adversely affected the intensity of the luminescence emissions.

Funder

National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3