PET/Bio-Based Terpolyester Blends with High Dimensional Thermal Stability

Author:

Park Sangyoon,Thanakkasaranee Sarinthip,Shin Hojun,Lee Youngsoo,Tak Guman,Seo Jongchul

Abstract

To improve the dimensional thermal stability of polyethylene terephthalate (PET), a poly(ethylene glycol 1,4-cyclohexane dimethylene (CHDM) isosorbide (ISB) terephthalate) (PEICT) known as ECOZEN®T110 (EZT) was introduced into PET using a melt blending technique. The miscibility, morphology, and thermal properties of the PET/EZT samples were investigated. The introduction of amorphous EZT into semi-crystalline PET increased the glass transition temperature (Tg) but decreased the crystallinity, which could be related to the transesterification reaction. By adding EZT contents up to 20%, the PET/EZT samples showed a single Tg, which indicated the miscibility between PET and EZT. However, two Tg values were observed in the PET/EZT samples with higher EZT contents (30–70%), indicating partial miscibility. This may have been due to the slightly different rheological and thermodynamic parameters that were affected by a higher ratio of bulky (rigid ISB and ductile CHDM) groups in EZT. However, the heat distortion temperature of the PET/EZT samples remarkably increased, which indicated that the dimensional stability was truly enhanced. Although the crystallinity of the PET/EZT samples decreased with increasing EZT content, the tensile strength and Young’s modulus decreased slightly. Based on these results, the as-prepared PET/EZT samples with high dimensional stability can be used as a high-temperature polymeric material in various applications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3