Abstract
Membrane-type acoustic metamaterial (MAM) has exhibited superior sound isolation properties, as well as thin and light characteristics. However, the anti-resonance modes of traditional MAMs are generated intermittently in a wide frequency range causing discontinuities in the anti-resonance modes. Achieving broadband low-frequency sound attenuation with lightweight MAM design is still a pivotal research aspect. Here, we present a strategy to realize wide sound-attenuation bands in low frequency range by introducing the design concept of bionic configuration philosophy into the MAM structures. Built by a polymeric membrane and a set of resonators, two kinds of MAM models are proposed based on the insight of a spider web topology. The sound attenuation performance and physical mechanisms are numerically and experimentally investigated. Multi-state anti-resonance modes, induced by the coupling of the bio-inspired arrangement and the host polymer film, are systematically explored. Significant sound attenuation is numerically and experimentally observed in both the lightweight bio-inspired designs. Remarkably, compared with a traditional MAM configuration, a prominent enhancement in both attenuation bandwidth and weight-reduction performance is verified. In particular, the bio-inspired MAM Model I exhibits a similar isolation performance as the reference model, but the weight is reduced by nearly half. The bio-inspired Model II broadens the sound attenuation bandwidth greatly; meanwhile, it retains a lighter weight design. The proposed bio-inspired strategies provide potential ways for designing sound isolation devices with both high functional and lightweight performance.
Funder
National Natural Science Foundation of China
Innovation Capability Support Plan of Shaanxi Province
Subject
Polymers and Plastics,General Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献