Comparison of the Thermal Properties of Geopolymer and Modified Gypsum

Author:

Prałat KarolORCID,Ciemnicka Justyna,Koper ArturORCID,Buczkowska Katarzyna EwaORCID,Łoś Piotr

Abstract

The paper presents the results of research concerning the influence of micromaterials on the heat conductivity coefficient λ, specifically heat Cp and thermal diffusivity a of modified gypsum and geopolymer. Microspheres, hydroxyethyl methylcellulose (HEMC) polymer, and aerogel were used as the gypsum’s modifying materials. The study also investigated an alkali potassium-activated methakaolin-based geopolymer with the addition of aluminium dust. During the measurements of thermal parameters, the nonstationary method was chosen, and an Isomet device—which recorded the required physical quantities—was used. When compared to the reference sample, a decrease in the thermal conductivity and diffusivity of the hardened gypsum— and a simultaneous increase in specific heat—was observed with the addition of micromaterials. The geopolymer sample was characterized by the lowest value of thermal conductivity, equal to 0.1141 W/(m·K). It was over 62% lower than the reference sample containing only gypsum. The experimental values of the thermal conductivity of the gypsum samples with the addition of HEMC, aerogel and microspheres were, respectively, over 23%, 6%, and 8% lower than those of the unmodified gypsum samples. The lowest values of thermal conductivity were observed in the case of the gypsum samples modified with polymer; this resulted from the fact that the polymer caused the greatest change in the structure of the gypsum’s composite, which were expressed by the lowest density and highest porosity.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference51 articles.

1. The Influence of Methylcellulose Viscosity on Properties of Gypsum Plaster Mortars;Pichniarczyk;Mater. Ceram.,2012

2. Estimation of shrinkage strains of cement mortars and concrete with polymer addition;Gruszczyński;Cement Wapno. Beton,2007

3. Design of inorganic polymer cements: Effects of matrix strengthening on microstructure

4. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements

5. Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3