Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses

Author:

Asyraf Muhammad Rizal MuhammadORCID,Ishak Mohamad Ridzwan,Sapuan Salit Mohd,Yidris NoorfaizalORCID

Abstract

The application of pultruded glass fiber-reinforced polymer composites (PGFRPCs) as a replacement for conventional wooden cross-arms in transmission towers is relatively new. Although numerous studies have conducted creep tests on coupon-scale PGFRPC cross-arms, none had performed creep analyses on full-scale PGFRPC cross-arms under actual working load conditions. Thus, this work proposed to study the influence of an additional bracing system on the creep responses of PGFRPC cross-arms in a 132 kV transmission tower. The creep behaviors and responses of the main members in current and braced PGFRPC cross-arm designs were compared and evaluated in a transmission tower under actual working conditions. These PGFRPC cross-arms were subjected to actual working loads mimicking the actual weight of electrical cables and insulators for a duration of 1000 h. The cross-arms were installed on a custom test rig in an open area to simulate the actual environment of tropical climate conditions. Further creep analysis was performed by using Findley and Burger models on the basis of experimental data to link instantaneous and extended (transient and viscoelastic) creep strains. The addition of braced arms to the structure reduced the total strain of a cross-arm’s main member beams and improved elastic and viscous moduli. The addition of bracing arms improved the structural integrity and stiffness of the cross-arm structure. The findings of this study suggested that the use of a bracing system in cross-arm structures could prolong the structures’ service life and subsequently reduce maintenance effort and cost for long-term applications in transmission towers.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3