Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis

Author:

Kilikevičius SigitasORCID,Kvietkaitė SaulėORCID,Mishnaevsky LeonORCID,Omastová MáriaORCID,Aniskevich AndreyORCID,Zeleniakienė DaivaORCID

Abstract

This paper presents a computational analysis on the mechanical and damage behavior of novel hybrid polymer composites with graphene and MXene nano-reinforcements targeted for flexible electronics and advanced high-strength structural applications with additional functions, such as real-time monitoring of structural integrity. Geometrical models of three-dimensional representative volume elements of various configurations were generated, and a computational model based on the micromechanical finite element method was developed and solved using an explicit dynamic solver. The influence of the geometrical orientation, aspect ratio, and volume fractions of the inclusions, as well as the interface properties between the nano-reinforcements and the matrix on the mechanical behavior, was determined. The results of the presented research give initial insights about the mechanical and damage behavior of the proposed composites and provide insight for future design iterations of similar multifunctional materials.

Funder

Lietuvos Mokslo Taryba

State Education Development Agency Republic of Latvia

Slovenská Akadémia Vied

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3