Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha

Author:

Lee Hye Soo,Lee Sun Mi,Park Sol Lee,Choi Tae-Rim,Song Hun-Suk,Kim Hyun-Joong,Bhatia Shashi KantORCID,Gurav RanjitORCID,Kim Yun-Gon,Kim June-Hyung,Choi Kwon-Young,Yang Yung-Hun

Abstract

Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference45 articles.

1. Current Situation and Development Prospect of Tung Oil Tree (Vernicia fordii) in Chongqing Three Gorges Reservoir Area

2. The emergence and resolution of a quality problem in the Chinese tung oil market 1890 to 1937;Setobayashi;Econ. Hist. Dev. Reg.,2020

3. Tung (Vernicia fordii and Vernicia montana);Shockey,2016

4. Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake

5. Paints, varnishes, and related products;Lin,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3