Synergistic and Regulatable Bioremediation Capsules Fabrication Based on Vapor-Phased Encapsulation of Bacillus Bacteria and its Regulator by Poly-p-Xylylene

Author:

Yang Yen-Ching,Huang Wei-Shen,Hu Shu-Man,Huang Chao-Wei,Chiu Chih-HaoORCID,Chen Hsien-YehORCID

Abstract

A regulatable bioremediation capsule material was synthesized with isolated single-strain bacteria (Bacillus species, B. CMC1) and a regulator molecule (carboxymethyl cellulose, CMC) by a vapor-phased encapsulation method with simple steps of water sublimation and poly-p-xylylene deposition in chemical vapor deposition (CVD) process. Mechanically, the capsule construct exhibited a controllable shape and dimensions, and was composed of highly biocompatible poly-p-xylylene as the matrix with homogeneously distributed bacteria and CMC molecules. Versatility of the encapsulation of the molecules at the desired concentrations was achieved in the vapor-phased sublimation and deposition fabrication process. The discovery of the fabricated capsule revealed that viable living B. CMC1 inhabited the capsule, and the capsule enhanced bacterial growth due to the materials and process used. Biologically, the encapsulated B. CMC1 demonstrated viable and functional enzyme activity for cellulase activation, and such activity was regulatable and proportional to the concentration of the decorated CMC molecules in the same capsule construct. Impressively, 13% of cellulase activity increase was realized by encapsulation of B. CMC1 by poly-p-xylylene, and a further 34% of cellulase activity increase was achieved by encapsulation of additional 2.5% CMC. Accordingly, this synergistic effectiveness of the capsule constructs was established by combining enzymatic B. CMC1 bacteria and its regulatory CMC by poly-p-xylylene encapsulation process. This reported encapsulation process exhibited other advantages, including the use of simple steps and a dry and clean process free of harmful chemicals; most importantly, the process is scalable for mass production. The present study represents a novel method to fabricate bacteria-encapsulated capsule for cellulose degradation in bioremediation that can be used in various applications, such as wastewater treatment and transforming of cellulose into glucose for biofuel production. Moreover, the concept of this vapor-phased encapsulation technology can be correspondingly used to encapsulate multiple bacteria and regulators to enhance the specific enzyme functions for degradation of various organic matters.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3