Detection of Streptavidin Based on Terminal Protection and Cationic Conjugated Polymer-Mediated Fluorescence Resonance Energy Transfer

Author:

Hu Tingting,Yan Ying,Tang Zhenwei,Liu Xinfa,Ma Changbei

Abstract

In this paper, a fast and simple strategy for sensitive detection of streptavidin (SA) was proposed based on terminal protection of small molecule-linked DNA and cationic conjugated polymer-mediated fluorescence resonance energy transfer (FRET). In principle, we designed a biotin-labelled DNA probe (P1) as the recognitive probe of SA, along with a complementary DNA probe (P2) to form double-stranded DNA (dsDNA) with P1. SYBR Green I (SG I) as a fluorescent dye was further used to specifically bind to dsDNA to emit stronger fluorescence. The cationic poly[(9,9-bis(6′-N,N,N-triethy-lammonium)hexyl) fluorenylene phenylene dibromide] (PFP) acted as the donor to participate in the FRET and transfer energy to the recipient SG I. In the absence of SA, P1 could not hybridize with P2 to form dsDNA and was digested by exonuclease I (Exo I); thus, only a weak FRET signal would be observed. In the presence of SA, biotin could specifically bind to SA, which protected P1 from Exo I cleavage. Then, P1 and P2 were hybridized into dsDNA. Therefore, the addition of SG I and PFP led to obvious FRET signal due to strong electrostatic interactions. Then, SA can be quantitatively detected by monitoring FRET changes. As the whole reagent reaction was carried out in 1.5 mL EP and detected in the colorimetric dish, the operation process of the detection system was relatively simple. The response time for each step was also relatively short. In this detection system, the linear equation was obtained for SA from 0.1 to 20 nM with a low detection limit of 0.068 nM (S/N = 3). In addition, this strategy has also achieved satisfactory results in the application of biological samples, which reveals the application prospect of this method in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3