Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO2 Nanoparticles with UV-Shielding Features

Author:

Stroea LenutaORCID,Chibac-Scutaru Andreea-LauraORCID,Melinte VioletaORCID

Abstract

The design of high-performance nanocomposites with improved mechanical, thermal or optical properties compared to starting polymers has generated special interest due to their use in a wide range of targeted applications. In the present work, polymer nanocomposites composed of polyurethane elastomers based on polycaprolactone or polycaprolactone/poly(ethylene glycol) soft segments and titanium dioxide (TiO2) nanoparticles as an inorganic filler were prepared and characterized. Initially, the surface of TiO2 nanoparticles was modified with (3-iodopropyl) trimethoxysilane as a coupling agent, and thereafter, the tertiary amine groups from polyurethane hard segments were quaternized with the silane-modified TiO2 nanoparticles in order to ensure covalent binding of the nanoparticles on the polymeric chains. In the preparation of polymer nanocomposites, two quaternization degrees were taken into account (1/1 and 1/0.5 molar ratios), and the resulting nanocomposite coatings were characterized by various methods (Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, thermogravimetric analysis, dynamic mechanical thermal analysis). The mechanical parameters of the samples evaluated by tensile testing confirm the elastomeric character of the polyurethanes and of the corresponding composites, indicating the obtaining of highly flexible materials. The absorbance/transmittance measurements of PU/TiO2 thin films in the wavelength range of 200–700 nm show that these partially block UV-A radiation and all UV-B radiation from sunlight and could possibly be used as UV-protective elastomeric coatings.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3