Effect of Micro-Mold Cavity Dimension on Structure and Property of Polylactic Acid/Polycaprolactone Blend under Microinjection Molding Conditions

Author:

Wang Meng,Ding Weiwei,Xie Yeping,Zhang Lifan,Chen YinghongORCID

Abstract

Microinjection molding is a novel frontier polymer processing strategy different from conventional ones. In this paper, three different cavity-sizes of micro-mold tools were firstly fabricated, and the influences of micro-mold cavity dimension on the phase morphology structure, crystallization and orientation, and mechanical performance of the microinjection molded polylactic acid (PLA)/polycaprolactone (PCL) blend microparts were carefully investigated accordingly. The results show that the reduction of the cavity size would result in much higher shear stress field and cooling temperature gradient, which is advantageous to the fibrillation and orientation of PCL-dispersed phase. Consequently, with decreasing the micro-mold cavity dimension from length 26 mm to 15 mm, the interfacial compatibility is improved, significantly increasing number of PCL fibers with smaller diameter are in situ formed in PLA matrix and their orientation degree also obviously increases, which is verified by SEM and 2D-WAXD measurements. The Differential Scanning Calorimetry (DSC) analysis shows that the decrease in cavity dimension causes the enhancement of PLA crystallization property due to shear-induced crystallization, which is reflected by the decreasing PLA cold crystallization temperature and increasing PLA crystallinity (almost doubling that of conventional macropart). As a result, the dynamic/static mechanical property measurements exhibit that with decreasing the cavity size, the storage modulus, and the loss modulus of PLA/PCL blend micropart increase, and the corresponding tensile strength, elongation at break, and Young’s modulus also present an obviously increasing tendency. The related investigations would provide some new spaces and insights for realization of high-performance of PLA/PCL blend micropart.

Funder

National Natural Science Foundation of China

International Science & Technology Innovation Cooperation Project of Sichuan Province, Sichuan, China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3