Creep Behaviour of Recycled Poly(ethylene) Terephthalate Non-Woven Geotextiles

Author:

Fleury Mateus PortoORCID,Nascimento Lucas Deroide do,Valentin Clever AparecidoORCID,Lins da Silva Jefferson,Luz Marta Pereira daORCID

Abstract

At the beginning of this century, due to well-established Brazilian recycling processes, geosynthetics’ manufacturers started to use recycled poly(ethylene) terephthalate (PET) yarns/filaments (from PET bottles) in geotextile production. Despite the fact that recycled products cannot act as reinforcement functions, geosynthetics are constantly under sustained tensile load and experiences evolutions of the axial strain (creep behaviour). Thus, this study aims to assess the influence of the structure of (needle-punched) non-woven geotextiles manufactured using recycled PET yarns on their creep behaviour. Two geotextiles with different fibre/filament production processes were investigated (short-staple fibres—GTXnwS—and continuous filaments—GTXnwC). Unconfined in-isolated conventional and accelerated (using the stepped isothermal method) creep tests were performed at 5%, 10%, 20%, 40% and 60% of geotextiles’ ultimate tensile strength. The geotextiles investigated provided similar creep behaviour to geotextiles manufactured with virgin PET material. The standard deviation of the axial strain tends to increase as the load level applied increase. The structure of the GTXnwS harms its tensile –strain behaviour, promoting axial deformation under sustained loads, at least 50% higher than GTXnwC for the same load level applied. The influence of the load level and geotextile structure in the initial axial strain is pointed out. Long-term predictions based on creep tests performed using the stepped isothermal method have proven to be conservative and they must be restricted for quality control of the investigated geotextiles.

Funder

Agência Nacional de Energia Elétrica

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3