Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers

Author:

Serra-Parareda FerranORCID,Vilaseca Fabiola,Espinach Francesc X.ORCID,Mutjé Pere,Delgado-Aguilar MarcORCID,Tarrés QuimORCID

Abstract

Biocomposites are composite materials where at least the matrix or the reinforcement phases are obtained from natural and renewable resources. Natural fibers for composite preparation can be obtained from annual plants, wood, recycled products, or agroforestry waste. The present work selected abaca strands, spruce fibers, recycled fibers from old newspaper, and barley fibers as raw materials to produce biocomposites, in combination with a biobased polyethylene. One very important feature in material science and for industrial applications is knowing how a material will deform under load, and this characteristic is represented by Young’s modulus. Therefore, in this work, the stiffness and deformation of the biocomposites were determined and evaluated using macromechanics and micromechanics analyses. Results were compared to those of conventional synthetic composites reinforced with glass fibers. From the micromechanics analysis, the intrinsic Young modulus of the reinforcements was obtained, as well as other micromechanics parameters such as the modulus efficiency and the length and orientation factors. Abaca strands accounted for the highest intrinsic modulus. One interesting outcome was that recycled fibers exhibited similar Young’s moduli to wood fibers. Finally, agroforestry waste demonstrated the lowest stiffening potential. The study explores the opportunity of using different natural fibers when specific properties or applications are desired.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3