Optimization of Plasmonic Gold Nanoparticle Concentration in Green LED Light Active Dental Photopolymer

Author:

Bukovinszky Katalin,Szalóki Melinda,Csarnovics István,Bonyár AttilaORCID,Petrik Péter,Kalas Benjámin,Daróczi Lajos,Kéki SándorORCID,Kökényesi Sándor,Hegedűs CsabaORCID

Abstract

Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of AuNPs on a dimethacrylate-based photopolymer system. The tested composites were designed to overlap the illumination required for the polymerization and the plasmon effect. The 5 nm-sized dodecanethiol capped AuNPs were applied in different concentrations in the matrix that were irradiated with green light (λ = 532 nm), where the Irgacure 784 photoinitiator also absorbs the light. The plasmonic effect was investigated for the refractive index change by surface plasmon resonance imaging (SPRi) supplemented by ellipsometry. Moreover, optical transmission and transmission electron micrographs (TEM), diametral tensile stress (DTS), and confocal Raman spectroscopy was performed to determine the degree of conversion (DC) at 1.0, 1.4, and 2.0 mW/cm2 light intensities. It was found that the optimal conditions were at 0.0208 wt% AuNPs concentration and 1.4 mW/cm2 light intensity at which the refractive index change, DTS, and DC data were all maximal. The study confirmed that AuNPs are applicable to improve the polymerization efficiency of dental composite resin.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3