Theoretical Determination of High-Energy Photon Attenuation and Recommended Protective Filler Contents for Flexible and Enhanced Dimensionally Stable Wood/NR and NR Composites

Author:

Poltabtim Worawat,Toyen Donruedee,Saenboonruang KiadtisakORCID

Abstract

This work aimed to theoretically determine the high-energy-photon-shielding properties of flexible wood/natural rubber (NR) and NR composites containing photon protective fillers, namely Pb, Bi2O3, or Bi2S3, using XCOM. The properties investigated were the mass attenuation coefficient (µm), linear attenuation coefficient (µ), and half value layer (HVL) of the composites, determined at varying photon energies of 0.001–5 MeV and varying filler contents of 0–1000 parts per hundred parts of rubber by weight (phr). The simulated results, which were in good agreement with previously reported experimental values (average difference was 5.3%), indicated that overall shielding properties increased with increasing filler contents but decreased with increasing incident photon energies. The results implied the potential of bismuth compounds, especially Bi2O3, to replace effective but highly toxic Pb as a safer high-energy-photon protective filler, evidenced by just a slight reduction in µm values compared with Pb fillers at the same filler content and photon energy. Furthermore, the results suggested that the addition of 20 phr wood particles, primarily aimed to enhance the rigidity and dimensional stability of Pb/NR, Bi2O3/NR, and Bi2S3/NR composites, did not greatly reduce shielding abilities; hence, they could be used as dimensional reinforcers for NR composites. Lastly, this work also reported the optimum Pb, Bi2O3, or Bi2S3 contents in NR and wood/NR composites at photon energies of 0.1, 0.5, 1, and 5 MeV, with 316–624 phr of filler being the recommended contents, of which the values depended on filler type and photon energy of interest.

Funder

Kasetsart University Research and Development Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3