On the Conductivity of Proton-Exchange Membranes Based on Multiblock Copolymers of Sulfonated Polysulfone and Polyphenylsulfone: An Experimental and Modeling Study

Author:

Ureña NievesORCID,Pérez-Prior M. TeresaORCID,Levenfeld Belén,García-Salaberri Pablo A.ORCID

Abstract

The effect of relative humidity (RH) and degree of sulfonation (DS) on the ionic conductivity and water uptake of proton-exchange membranes based on sulfonated multiblock copolymers composed of polysulfone (PSU) and polyphenylsulfone (PPSU) is examined experimentally and numerically. Three membranes with a different DS and ion-exchange capacity are analyzed. The heterogeneous structure of the membranes shows a random distribution of sulfonated (hydrophilic) and non-sulfonated (hydrophobic) domains, whose proton conductivity is modeled based on percolation theory. The mesoscopic model solves simplified Nernst–Planck and charge conservation equations on a random cubic network. Good agreement is found between the measured ionic conductivity and water uptake and the model predictions. The ionic conductivity increases with RH due to both the growth of the hydrated volume available for conduction and the decrease of the tortuosity of ionic transport pathways. Moreover, the results show that the ionic conductivity increases nonlinearly with DS, experiencing a strong rise when the DS is varied from 0.45 to 0.70, even though the water uptake of the membranes remains nearly the same. In contrast, the increase of the ionic conductivity between DS=0.70 and DS=0.79 is significantly lower, but the water uptake increases sharply. This is explained by the lack of microphase separation of both copolymer blocks when the DS is exceedingly high. Encouragingly, the copolymer membranes demonstrate a similar performance to Nafion under well hydrated conditions, which can be further optimized by a combination of numerical modeling and experimental characterization to develop new-generation membranes with better properties.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3