Challenges in Solvent-Free Methods for Manufacturing Electrodes and Electrolytes for Lithium-Based Batteries

Author:

Verdier Nina,Foran Gabrielle,Lepage David,Prébé Arnaud,Aymé-Perrot David,Dollé MickaëlORCID

Abstract

With the ever-growing energy storage notably due to the electric vehicle market expansion and stationary applications, one of the challenges of lithium batteries lies in the cost and environmental impacts of their manufacture. The main process employed is the solvent-casting method, based on a slurry casted onto a current collector. The disadvantages of this technique include the use of toxic and costly solvents as well as significant quantity of energy required for solvent evaporation and recycling. A solvent-free manufacturing method would represent significant progress in the development of cost-effective and environmentally friendly lithium-ion and lithium metal batteries. This review provides an overview of solvent-free processes used to make solid polymer electrolytes and composite electrodes. Two methods can be described: heat-based (hot-pressing, melt processing, dissolution into melted polymer, the incorporation of melted polymer into particles) and spray-based (electrospray deposition or high-pressure deposition). Heat-based processes are used for solid electrolyte and electrode manufacturing, while spray-based processes are only used for electrode processing. Amongst these techniques, hot-pressing and melt processing were revealed to be the most used alternatives for both polymer-based electrolytes and electrodes. These two techniques are versatile and can be used in the processing of fillers with a wide range of morphologies and loadings.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3