Review and Suggestion of Failure Theories in Voids Scenario for VARTM Processed Composite Materials

Author:

Dhimole Vivek KumarORCID,Serrao PruthviORCID,Cho ChongduORCID

Abstract

Fiber-reinforced composite structures are used in different applications due to their excellent strength to weight ratio. Due to cost and tool handling issues in conventional manufacturing processes, like resin transfer molding (RTM) and autoclave, vacuum-assisted resin transfer molding (VARTM) is the best choice among industries. VARTM is highly productive and cheap. However, the VARTM process produces complex, lightweight, and bulky structures, suitable for mass and cost-effective production, but the presence of voids and fiber misalignment in the final processed composite influences its strength. Voids are the primary defects, and they cannot be eliminated completely, so a design without considering void defects will entail unreliability. Many conventional failure theories were used for composite design but did not consider the effect of voids defects, thus creating misleading failure characteristics. Due to voids, stress and strain uncertainty affects failure mechanisms, such as microcrack, delamination, and fracture. That’s why a proper selection and understanding of failure theories is necessary. This review discusses previous conventional failure theories followed by work considering the void’s effect. Based on the review, a few prominent theories were suggested to estimate composite strength in the void scenario because they consider the effect of the voids through crack density, crack, or void modeling. These suggested theories were based on damage mechanics (discrete damage mechanics), fracture mechanics (virtual crack closure technique), and micromechanics (representative volume element). The suggested theories are well-established in finite element modeling (FEM), representing an effective time and money-saving tool in design strategy, with better early estimation to enhance current design practices’ effectiveness for composites. This paper gives an insight into choosing the failure theories for composites in the presence of voids, which are present in higher percentages in mass production and less-costly processes (VARTM).

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3