Effect of Graphene on the Performance of Silicon–Carbon Composite Anode Materials for Lithium-Ion Batteries

Author:

Ni Chengyuan1,Xia Chengdong1ORCID,Liu Wenping23,Xu Wei1,Shan Zhiqiang4,Lei Xiaoxu2,Qin Haiqing2,Tao Zhendong1

Affiliation:

1. Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China

2. Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd., Guilin 541004, China

3. School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

4. School of Environmental and Food Engineering, Liuzhou Vocational & Technical College, Liuzhou 545000, China

Abstract

(Si/graphite)@C and (Si/graphite/graphene)@C were synthesized by coating asphalt-cracked carbon on the surface of a Si-based precursor by spray drying, followed by heat treatment at 1000 °C under vacuum for 2h. The impact of graphene on the performance of silicon–carbon composite-based anode materials for lithium-ion batteries (LIBs) was investigated. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) images of (Si/graphite/graphene)@C showed that the nano-Si and graphene particles were dispersed on the surface of graphite, and thermogravimetric analysis (TGA) curves indicated that the content of silicon in the (Si/graphite/graphene)@C was 18.91%. More bituminous cracking carbon formed on the surface of the (Si/graphite/graphene)@C due to the large specific surface area of graphene. (Si/Graphite/Graphene)@C delivered first discharge and charge capacities of 860.4 and 782.1 mAh/g, respectively, initial coulombic efficiency (ICE) of 90.9%, and capacity retention of 74.5% after 200 cycles. The addition of graphene effectively improved the cycling performance of the Si-based anode materials, which can be attributed to the reduction of electrochemical polarization due to the good structural stability and high conductivity of graphene.

Funder

Guangxi Science and Technology Project

Scientific and Technological Plan of Guilin City

Scientific and Technological Plan of Liuzhou City

Quzhou Science and Technology Bureau

Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3