The Dynamic Mechanical Properties and Damage Constitutive Model of Ultra-High-Performance Steel-Fiber-Reinforced Concrete (UHPSFRC) at High Strain Rates

Author:

Lv Xiao1,Li Yan1,Guo Hui23,Liang Wenbiao4,Zhai Yue1,Li Le1

Affiliation:

1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710072, China

2. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China

3. Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China

4. School of Sciences, Chang’an University, Xi’an 710072, China

Abstract

A high strain rate occurs when the strain rate exceeds 100 s−1. The mechanical behavior of materials at a high strain rate is different from that at middle and low strain rates. In order to study the dynamic compressive mechanical properties of ultra-high-performance steel-fiber-reinforced concrete (UHPSFRC) at high strain rates, an electro-hydraulic servo universal testing machine and a separate Hopkinson pressure bar (SHPB) with a diameter of 120 mm were used, respectively. A quasi-static compression test (strain rate 0.001 s−1) and impact compression test with a strain rate range of 90~200 s−1 were carried out to study the failure process, failure mode, and stress–strain curve characteristics of UHPSFRC at different strain rates and quantify the strain rate strengthening effect and fiber toughening effect. Based on the statistical damage theory and energy conversion principle, a dynamic damage constitutive model considering the effects of strain rate and fiber content was constructed. The results showed that the rate correlation of UHPSFRC and the fiber toughening properties showed a certain coupling competition mechanism. When the fiber content was less than 1.5%, with an increase in the steel fiber content, the crack initiation and propagation time of the specimen was extended, and the strain rate sensitivity gradually decreased. When the fiber content was 2%, the impact compressive strength of the specimen was optimal. Compared with UHPC, the dynamic increase factor (DIF) of UHPSFRC was significantly lower. The dynamic damage constitutive model established in this paper, considering the influence of strain rate and fiber content, has a good applicability and can describe the mechanical behavior of UHPSFRC at a high strain rate.

Funder

National Natural Science Foundation of China

Xianyang City Science and Technology Innovation Team Project

Shaanxi Provincial Natural Science Basic Research Project

Central University Fund Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3