Preparation and Performance Study of High-Strength and Corrosion-Resistant Cement-Based Materials Applied in Coastal Acid Rain Areas

Author:

Wang Junfeng1,Zhang Shaoxuan1,Fu Qionglin2,Hu Yang1,Lu Liulei1,Wang Zhihao3

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Key Laboratory of Ministry of Education for Tropical Marine Biological Resources Utilization and Protection, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China

3. School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China

Abstract

Investigations regarding the preparation and durability of cement-based materials applied in specific coastal acid rain environments are scarce, particularly those involving the addition of four auxiliary cementitious materials (ACMs) to cement for modification. To improve the durability of concrete structures in coastal acid rain areas, a systematic study was conducted regarding the preparation of high-strength and corrosion-resistant cement-based materials using ACM systems composed of fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and desulfurization gypsum (DG) instead of partial cement. Through an orthogonal experimental design, the effect of the water–binder ratio, cementitious ratio, and replacement cement ratio on the compressive strength, corrosion resistance coefficient, and chloride ion permeability coefficient of the materials were analyzed and the mix proportions of the materials were evaluated and optimized using the comprehensive scoring method. The results show that implementing a FA:GBFS:SF:DG ratio of 2:6:1:1 to replace 60% of cement allows the consumption of calcium hydroxide crystals generated through cement hydration, promotes the formation of ettringite, optimizes the pore structures of cementitious materials, and improves the compressive strength, acid corrosion resistance, and chloride ion permeability of the materials. This study provides a reference for selecting concrete materials for buildings in coastal acid rain environments.

Funder

Key R&D project in Hainan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3