Supercapacitors: An Efficient Way for Energy Storage Application

Author:

Czagany Mate1,Hompoth Szabolcs1,Keshri Anup Kumar2,Pandit Niranjan2,Galambos Imre3,Gacsi Zoltan1ORCID,Baumli Peter1

Affiliation:

1. Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary

2. Plasma Spray Coating Laboratory, Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta 801106, Bihar, India

3. Asianet Hungary Ltd., 1033 Budapest, Hungary

Abstract

To date, batteries are the most widely used energy storage devices, fulfilling the requirements of different industrial and consumer applications. However, the efficient use of renewable energy sources and the emergence of wearable electronics has created the need for new requirements such as high-speed energy delivery, faster charge–discharge speeds, longer lifetimes, and reusability. This leads to the need for supercapacitors, which can be a good complement to batteries. However, one of their drawbacks is their lower energy storage capability, which has triggered worldwide research efforts to increase their energy density. With the introduction of novel nanostructured materials, hierarchical pore structures, hybrid devices combining these materials, and unconventional electrolytes, significant developments have been reported in the literature. This paper reviews the short history of the evolution of supercapacitors and the fundamental aspects of supercapacitors, positioning them among other energy-storage systems. The main electrochemical measurement methods used to characterize their energy storage features are discussed with a focus on their specific characteristics and limitations. High importance is given to the integral components of the supercapacitor cell, particularly to the electrode materials and the different types of electrolytes that determine the performance of the supercapacitor device (e.g., storage capability, power output, cycling stability). Current directions in the development of electrode materials, including carbonaceous forms, transition metal-based compounds, conducting polymers, and novel materials are discussed. The synergy between the electrode material and the current collector is a key factor, as well as the fine-tuning of the electrode material and electrolyte.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3