Abstract
We propose an imaging method based on optical fiber bundle combined with micro-scanning technique for improving image quality without complex image reconstruction algorithms. In the proposed method, a piezoelectric-ceramic-chip is used as the micro-displacement driver of the optical fiber bundle, which has the advantages of small volume, fast response speed and high precision. The corresponding displacement of the optical fiber bundle can be generated by precise voltage controlling. An optical fiber bundle with core/cladding diameter 4/80 μm and hexagonal arrangement is used to scan the 1951 USAF target. The scanning step is 1 μm, which is equivalent to the diffraction limit resolution of the optical system. The corresponding information is recorded at high speed through photo-detectors and a high-resolution image is obtained by image stitching processing. The minimum distinguishable stripe width of the proposed imaging technique with piezoelectric-ceramic-chip driven micro-scanning is approximately 2.1 μm, which is 1 time higher than that of direct imaging with a CCD camera whose pixel size is close to the fiber core size. The experimental results indicate that the optical fiber bundle combined with piezoelectric-ceramic-chip driven micro-scanning is a high-speed and high-precision technique for high-resolution imaging.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献