Delicar: A Smart Deep Learning Based Self Driving Product Delivery Car in Perspective of Bangladesh

Author:

Chy Md. Kalim AmzadORCID,Masum Abdul Kadar Muhammad,Sayeed Kazi Abdullah MohammadORCID,Uddin Md ZiaORCID

Abstract

The rapid expansion of a country’s economy is highly dependent on timely product distribution, which is hampered by terrible traffic congestion. Additional staff are also required to follow the delivery vehicle while it transports documents or records to another destination. This study proposes Delicar, a self-driving product delivery vehicle that can drive the vehicle on the road and report the current geographical location to the authority in real-time through a map. The equipped camera module captures the road image and transfers it to the computer via socket server programming. The raspberry pi sends the camera image and waits for the steering angle value. The image is fed to the pre-trained deep learning model that predicts the steering angle regarding that situation. Then the steering angle value is passed to the raspberry pi that directs the L298 motor driver which direction the wheel should follow. Based upon this direction, L298 decides either forward or left or right or backwards movement. The 3-cell 12V LiPo battery handles the power supply to the raspberry pi and L298 motor driver. A buck converter regulates a 5V 3A power supply to the raspberry pi to be working. Nvidia CNN architecture has been followed, containing nine layers including five convolution layers and three dense layers to develop the steering angle predictive model. Geoip2 (a python library) retrieves the longitude and latitude from the equipped system’s IP address to report the live geographical position to the authorities. After that, Folium is used to depict the geographical location. Moreover, the system’s infrastructure is far too low-cost and easy to install.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3