Fabrication of Highly Microporous Structure Activated Carbon via Surface Modification with Sodium Hydroxide

Author:

Hafizuddin Mohd Sahfani,Lee Chuan Li,Chin Kit LingORCID,H’ng Paik San,Khoo Pui San,Rashid UmerORCID

Abstract

The aim of this study was to select the optimal conditions for the carbonization process followed by surface modification treatment with sodium hydroxide (NaOH) to obtain a highly microporous activated carbon structure derived from palm kernel shells (PKS) and coconut shells (CS). The effects of the carbonization temperature and NaOH concentration on the physiochemical properties, adsorption capability, specific surface area, surface morphology, and surface chemistry of PKS and CS were evaluated in this study. The results show that surface-modified activated carbons presented higher surface area values (CS: 356.87 m2 g−1, PKS: 427.64 m2 g−1), smaller pore size (CS: 2.24 nm, PKS: 1.99 nm), and larger pore volume (CS: 0.34 cm3 g−1, PKS: 0.30 cm3 g−1) than the untreated activated carbon, demonstrating that the NaOH surface modification was efficient enough to improve the surface characteristics of the activated carbon. Moreover, surface modification via 25% NaOH greatly increases the active functional group of activated carbon, thereby directly increasing the adsorption capability of activated carbon (CS: 527.44 mg g−1, PKS: 627.03 mg g−1). By applying the NaOH post-treatment as the ultimate surface modification technique to the activated carbon derived from PKS and CS, a highly microporous structure was produced.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3