Aging of 3D Printed Polymers under Sterilizing UV-C Radiation

Author:

Amza Catalin GheorgheORCID,Zapciu AurelianORCID,Baciu FlorinORCID,Vasile Mihai Ion,Popescu DianaORCID

Abstract

In the context of the COVID-19 pandemic, shortwave ultraviolet radiation with wavelengths between 200 nm and 280 nm (UV-C) is seeing increased usage in the sterilization of medical equipment, appliances, and spaces due to its antimicrobial effect. During the first weeks of the pandemic, healthcare facilities experienced a shortage of personal protective equipment. This led to hospital technicians, private companies, and even members of the public to resort to 3D printing in order to produce fast, on-demand resources. This paper analyzes the effect of accelerated aging through prolonged exposure to UV-C on mechanical properties of parts 3D printed by material extrusion (MEX) from common polymers, such as polylactic acid (PLA) and polyethylene terephthalate-glycol (PETG). Samples 3D printed from these materials went through a 24-h UV-C exposure aging cycle and were then tested versus a control group for changes in mechanical properties. Both tensile and compressive strength were determined, as well as changes in material creep properties. Prolonged UV-C exposure reduced the mechanical properties of PLA by 6–8% and of PETG by over 30%. These findings are of practical importance for those interested in producing functional MEX parts intended to be sterilized using UV-C. Scanning electron microscopy (SEM) was performed in order to assess any changes in material structure.

Funder

Erasmus+

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3