Author:
Jiao Shufei,Liu Zijie,Liu Min,Liu Yongxian,Zhong Shuming,Wang Feng,Yin Yanzhen
Abstract
Selenium-functionalized starch (Se-starch80) is one of the main functional foods used for selenium supplementation. In traditional agriculture, Se-starch has some deficiencies such as long growth cycle and unstable selenium content that prevent its antioxidant performance. In this study, Se-starch was prepared by the nucleophilic addition between NaSeH and carbon-carbon double bond of octenyl succinic anhydride waxy corn starch ester (OSA starch). Some techniques such as 1HNMR, XPS, SEM-EDS, XRD and FT-IR were used to characterize the relevant samples and the results showed that the modification did not destroy the starch framework significantly and the catalytic center (negative divalent selenium) was anchored on the starch framework. The intensive distribution of catalytic center on the starch surface and the hydrophobic microenvironments derived from the OSA chains furnished the Se-starch80 with a high GPx-like catalytic activity (initial reaction rate = 3.64 μM/min). This value was about 1.5 × 105 times higher than that of a typical small-molecule GPx mimic (PhSeSePh). In addition, the Se-starch80, without any cytotoxicity, showed a saturated kinetic catalytic behavior that is similar to a typical enzyme. This work exemplifies a biodegradable selenium-functionalized polymer platform for the high-performing GPx mimic.
Funder
National Natural Science Foundation of China
Natural Science Foundation for Distinguished Young Scholars of Guangxi Province
Subject
Polymers and Plastics,General Chemistry