Determination of the Thermodynamic Parameters of the Pyrolysis Process of Post-Consumption Thermoplastics by Non-Isothermal Thermogravimetric Analysis

Author:

Palmay Paul,Puente Cesar,Barzallo Diego,Bruno Joan CarlesORCID

Abstract

Currently, the pyrolysis process is an important technology for the final treatment of plastic waste worldwide. For this reason, knowing in detail the chemical process and the thermodynamics that accompany cracking reactions is of utmost importance. The present study aims to determine the thermodynamic parameters of the degradation process of conventional thermoplastics (polystyrene (PS), polyethylene terephthalate (PET), high-density polyethylene (HDPE), polypropylene (PP) and polyvinyl chloride (PVC)) from the study of their chemical kinetics by thermogravimetric analysis (TG). Non-isothermal thermogravimetry was performed at three heating rates from room temperature to 550 °C with an inert nitrogen atmosphere with a flow of 20 mL min−1. Once the TG data is obtained, an analysis is carried out with the isoconversional models of Friedman (FR), Kissinger–Akahira–Sunose (KAS), and Flynn–Wall–Ozawa (FWO) in order to determine the one that best fits the experimental data, and with this, the calculation of the activation energy and the pre-exponential factor is performed. The validation of the model was carried out using the correlation factor, determining that the KAS model is the one that best adjusts for the post-consumer thermoplastic degradation process at the three heating rates. With the use of the kinetic parameters, the variation of the Gibbs free energy is determined in each of the cases, where it is necessary that for structures containing aromatic groups a lower energy is presented, which implies a relative ease of degradation compared to the linear structures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3