Development of Dental Poly(methyl methacrylate)-Based Resin for Stereolithography Additive Manufacturing

Author:

Hata Kentaro,Ikeda HiroshiORCID,Nagamatsu Yuki,Masaki Chihiro,Hosokawa Ryuji,Shimizu Hiroshi

Abstract

Poly(methyl methacrylate) (PMMA) is widely used in dental applications. However, PMMA specialized for stereolithography (SLA) additive manufacturing (3D-printing) has not been developed yet. This study aims to develop a novel PMMA-based resin for SLA 3D-printing by mixing methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and PMMA powder in various mixing ratios. The printability and the viscosity of the PMMA-based resins were examined to determine their suitability for 3D-printing. The mechanical properties (flexural strength and Vickers hardness), shear bond strength, degree of conversion, physicochemical properties (water sorption and solubility), and cytotoxicity for L929 cells of the resulting resins were compared with those of three commercial resins: one self-cured resin and two 3D-print resins. EGDMA and PMMA were found to be essential components for SLA 3D-printing. The viscosity increased with PMMA content, while the mechanical properties improved as EGDMA content increased. The shear bond strength tended to decrease as EGDMA increased. Based on these characteristics, the optimal composition was determined to be 30% PMMA, 56% EGDMA, 14% MMA with flexural strength (84.6 ± 7.1 MPa), Vickers hardness (21.6 ± 1.9), and shear bond strength (10.5 ± 1.8 MPa) which were comparable to or higher than those of commercial resins. The resin’s degree of conversion (71.5 ± 0.7%), water sorption (19.7 ± 0.6 μg/mm3), solubility (below detection limit), and cell viability (80.7 ± 6.2% at day 10) were all acceptable for use in an oral environment. The printable PMMA-based resin is a potential candidate material for dental applications.

Funder

Japan Society for the Promotion of Science

Japanese Association for Dental Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3