Abstract
Three-dimensional (3D) printing technology is now widely used in biomedical developments. Especially, photo-curing systems provide high resolution and precision. The current goal of biomedical 3D printing technology is the printing of human organs, but the current commercial photo-curable materials generally have high mechanical strength that cannot meet the mechanical properties of the object to be printed. In this research, a gastric model was printed using a photo-curing 3D printing technique. To mimic the wrinkle pattern of human gastric tissue, cis-1,4 polyisoprene with different reactive diluents was mixed and identified a formulation that produced a print with human gastric softness. This research discussed the effect of the Young’s modulus of the material and elucidated the relationship between the degree of conversion rate and viscosity. After modifying the cis-1,4 polyisoprene surface from hydrophobic to hydrophilic, we then evaluated its adhesion efficiency for gastric mucin and the gastrointestinal-inhabiting bacterium Helicobacter pylori.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献