Abstract
This paper presents the outcomes of extensive research targeting the development of high-performance alkyd and polyester resins used as binders in mould- and core-making permeable composite materials designated for large-size/complex-shape, heavy alloy-steel and cast-iron castings (0.5 to 50 tonnes): steam turbine casings (e.g., 18K360 condensing turbine), naval engine blocks and heavy machinery. The technology was implemented by Zamech/ALSTON Power. The key issues discussed here are: (1) control of resin crosslinking kinetics; slow or rapid strength development, (2) shelf-life control of pre-mixed composite, (3) improved thermo-mechanical stability; (4) kinetics of gaseous by-product emission. Optimised composite formulations (resins, crosslinkers and catalysts) allow for the flexible control of material properties and mould-/core fabrication, i.e.,: shelf-life: 10–120 min; mould stripping time: 10 min to 24 h; compressive strength: 4–6 MPa (with post-cure: 10–12 MPa); tensile strength: up to 3 MPa (after post-cure). The moulding sands developed achieved thermal resistance temperatures of up to 345 °C, which exceeded that of 280 °C of comparable commercial material. The onset of the thermal decomposition process was 2–3 times longer than that of furan or commercial alkyd/polyester resin. The technology developed allows for the defect-free manufacture of castings (no pinholes) and binder contents minimisation to 1.2–1.5% with quartz and 1.2% with zirconium or chromite sand.
Subject
Polymers and Plastics,General Chemistry
Reference41 articles.
1. A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process
2. Application of cores and binders in metalcasting
3. Sphere Packing from MathWorld—A Wolfram Web Resourcehttps://mathworld.wolfram.com/SpherePacking.html
4. The Effect of Solvent Content in Binder on the Nature of Surface Phenomena Taking Place in a Sand Grains–Binding Material System;Hutera,2008
5. Evaluation of wettability of binders used in moulding sands;Hutera;Arch. Foundry Eng.,2007
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献