Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications

Author:

Devi V. K. AnupamaORCID,Shyam RohinORCID,Palaniappan ArunkumarORCID,Jaiswal Amit Kumar,Oh Tae-Hwan,Nathanael Arputharaj JosephORCID

Abstract

Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ‘‘smart self-healing hydrogels’’ which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel’s mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3